Variational iteration method for solving the wave equation subject to an integral conservation condition
Mehdi Dehghan and
Abbas Saadatmandi
Chaos, Solitons & Fractals, 2009, vol. 41, issue 3, 1448-1453
Abstract:
In this work, the well known variational iteration method is used for solving the one-dimensional wave equation that combines classical and integral boundary conditions. This method is based on the use of Lagrange multipliers for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which tends to the exact solution of the problem. We will change the main problem to a direct problem which is easy to handle the variational iteration method. Illustrative examples are included to demonstrate the validity and applicability of the presented method.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908002737
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:3:p:1448-1453
DOI: 10.1016/j.chaos.2008.06.009
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().