Spatiotemporal complexity of a predator–prey system with the effect of noise and external forcing
Feng Rao,
Weiming Wang and
Zhenqing Li
Chaos, Solitons & Fractals, 2009, vol. 41, issue 4, 1634-1644
Abstract:
In this paper, we present a spatial version of the Ivlev-type predator–prey model which contains some important factors, such as noise on predator, external periodic forcing and diffusion processes on both predator and prey. From the numerical results, we know that noise or external periodic forcing can induce instability and enhance the oscillation of the species density, and the cooperation between noise and external periodic forcing inherent to the deterministic dynamics of periodically driven models gives rise to the appearance of a rich transport phenomenology. Furthermore, we demonstrate that the spatially extended system exhibits a resonant patterns and frequency-locking phenomena. Our results show that noise and external periodic forcing play a prominent role in the predator–prey model.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790800307X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:4:p:1634-1644
DOI: 10.1016/j.chaos.2008.07.005
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().