EconPapers    
Economics at your fingertips  
 

Alternative implementation of the chaotic Chen–Lee system

Long-Jye Sheu, Lap-Mou Tam, Hsien-Keng Chen and Seng-Kin Lao

Chaos, Solitons & Fractals, 2009, vol. 41, issue 4, 1923-1929

Abstract: The chaotic Chen–Lee system was developed with a formalism based on the Euler equations for the motion of a rigid body. It was proved that this system is the governing set of equations for gyro motion with feedback control. Recently, studies were conducted to explore the dynamic behavior of this system, including fractional order behavior, the generation of hyperchaos and perturbation analysis, control and anti-control of chaos, synchronization, etc. In this study, we further explore (1) the stability of the equilibrium points and (2) the implementation of an electronic circuit using the Chen–Lee system. It is shown that not only is this system related to gyro motion but can also be applied to electronic circuits for encryption purposes.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908003524
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:4:p:1923-1929

DOI: 10.1016/j.chaos.2008.07.053

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1923-1929