Quantum infinite square well with an oscillating wall
M.L. Glasser,
J. Mateo,
J. Negro and
L.M. Nieto
Chaos, Solitons & Fractals, 2009, vol. 41, issue 4, 2067-2074
Abstract:
A linear matrix equation is considered for determining the time dependent wave function for a particle in a one-dimensional infinite square well having one moving wall. By a truncation approximation, whose validity is checked in the exactly solvable case of a linearly contracting wall, we examine the cases of a simple harmonically oscillating wall and a non-harmonically oscillating wall for which the defining parameters can be varied. For the latter case, we examine in closer detail the dependence on the frequency changes, and we find three regimes: an adiabatic behabiour for low frequencies, a periodic one for high frequencies, and a chaotic behaviour for an intermediate range of frequencies.
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908003718
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:4:p:2067-2074
DOI: 10.1016/j.chaos.2008.07.055
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().