Global asymptotical synchronization of chaotic neural networks by output feedback impulsive control: An LMI approach
Jun Guo Lu and
Guanrong Chen
Chaos, Solitons & Fractals, 2009, vol. 41, issue 5, 2293-2300
Abstract:
In this paper, impulsive control for master–slave synchronization schemes consisting of identical chaotic neural networks is studied. Impulsive control laws are derived based on linear static output feedback. A sufficient condition for global asymptotic synchronization of master–slave chaotic neural networks via output feedback impulsive control is established, in which synchronization is proven in terms of the synchronization errors between the full state vectors. An LMI-based approach for designing linear static output feedback impulsive control laws to globally asymptotically synchronize chaotic neural networks is discussed. With the help of LMI solvers, linear output feedback impulsive controllers can be easily obtained along with the bounds of the impulsive intervals for global asymptotic synchronization. The method is finally illustrated by numerical simulations.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908004189
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:5:p:2293-2300
DOI: 10.1016/j.chaos.2008.09.024
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().