EconPapers    
Economics at your fingertips  
 

Novel stability criteria for uncertain delayed Cohen–Grossberg neural networks using discretized Lyapunov functional

Fernando O. Souza, Reinaldo M. Palhares and Petr Ya. Ekel

Chaos, Solitons & Fractals, 2009, vol. 41, issue 5, 2387-2393

Abstract: This paper deals with the stability analysis of delayed uncertain Cohen–Grossberg neural networks (CGNN). The proposed methodology consists in obtaining new robust stability criteria formulated as linear matrix inequalities (LMIs) via the Lyapunov–Krasovskii theory. Particularly one stability criterion is derived from the selection of a parameter-dependent Lyapunov–Krasovskii functional, which allied with the Gu’s discretization technique and a simple strategy that decouples the system matrices from the functional matrices, assures a less conservative stability condition. Two computer simulations are presented to support the improved theoretical results.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908004256
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:5:p:2387-2393

DOI: 10.1016/j.chaos.2008.09.009

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2387-2393