EconPapers    
Economics at your fingertips  
 

Dynamics of an impulsive control system which prey species share a common predator

Pei Yongzhen, Yang Yong and Li Changguo

Chaos, Solitons & Fractals, 2009, vol. 41, issue 5, 2429-2436

Abstract: In an ecosystem multiple prey species often share a common predator and the interactions between the preys are neutral. In view of these facts and based on a multiple species prey–predator system with Holling IV and II functional responses, an impulsive differential equation to model the process of periodically releasing natural enemies and spraying pesticides at different fixed times for pest control is proposed and investigated. It is proved that there exists a locally asymptotically stable pest-eradication periodic solution under the assumption that the impulsive period is less than some critical value (or the release amount of the predator is greater than another critical value). Permanence conditions are established when the impulsive period is greater than another critical value (or the release amount of the predator is less than some critical value). Numerical results show that the system we consider has more complex dynamics including period solution, quasi-periodic oscillation, chaos, intermittency and crises.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908004311
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:5:p:2429-2436

DOI: 10.1016/j.chaos.2008.09.016

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2429-2436