Some fixed point theorems in fuzzy reflexive Banach spaces
I. Sadeqi and
F. Solaty kia
Chaos, Solitons & Fractals, 2009, vol. 41, issue 5, 2606-2612
Abstract:
In this paper, we first show that there are some gaps in the fixed point theorems for fuzzy non-expansive mappings which are proved by Bag and Samanta, in [Bag T, Samanta SK. Fixed point theorems on fuzzy normed linear spaces. Inf Sci 2006;176:2910–31; Bag T, Samanta SK. Some fixed point theorems in fuzzy normed linear spaces. Inform Sci 2007;177(3):3271–89]. By introducing the notion of fuzzy and α- fuzzy reflexive Banach spaces, we obtain some results which help us to establish the correct version of fuzzy fixed point theorems. Second, by applying Theorem 3.3 of Sadeqi and Solati kia [Sadeqi I, Solati kia F. Fuzzy normed linear space and it’s topological structure. Chaos, Solitons & Fractals, in press] which says that any fuzzy normed linear space is also a topological vector space, we show that all topological version of fixed point theorems do hold in fuzzy normed linear spaces.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908004657
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:5:p:2606-2612
DOI: 10.1016/j.chaos.2008.09.050
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().