Linear combination rule in genetic algorithm for optimization of finite impulse response neural network to predict natural chaotic time series
Hossein Mirzaee
Chaos, Solitons & Fractals, 2009, vol. 41, issue 5, 2681-2689
Abstract:
A finite impulse response neural network, with tap delay lines after each neuron in hidden layer, is used. Genetic algorithm with arithmetic decimal crossover and Roulette selection with normal probability mutation method with linear combination rule is used for optimization of FIR neural network. The method is applied for prediction of several important and benchmarks chaotic time series such as: geomagnetic activity index natural time series and famous Mackey–Glass time series. The results of simulations shows that applying dynamic neural models for modeling of highly nonlinear chaotic systems is more satisfactory with respect to feed forward neural networks. Likewise, global optimization method such as genetic algorithm is more efficient in comparison of nonlinear gradient based optimization methods like momentum term, conjugate gradient.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908004554
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:5:p:2681-2689
DOI: 10.1016/j.chaos.2008.09.057
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().