Chaos synchronization of the fractional-order Chen’s system
Hao Zhu,
Shangbo Zhou and
Zhongshi He
Chaos, Solitons & Fractals, 2009, vol. 41, issue 5, 2733-2740
Abstract:
In this paper, based on the stability theorem of linear fractional systems, a necessary condition is given to check the chaos synchronization of fractional systems with incommensurate order. Chaos synchronization is studied by utilizing the Pecora–Carroll (PC) method and the coupling method. The necessary condition can also be used as a tool to confirm results of a numerical simulation. Numerical simulation results show the effectiveness of the necessary condition.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908004761
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:5:p:2733-2740
DOI: 10.1016/j.chaos.2008.10.005
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().