EconPapers    
Economics at your fingertips  
 

Arguments for the compactness and multiple connectivity of our cosmic spacetime

M.S. El Naschie

Chaos, Solitons & Fractals, 2009, vol. 41, issue 5, 2787-2789

Abstract: Some global topological as well as quantative arguments are given, indicating that our universe is most probably compact, multiply connected and without boundaries. The analysis leading to this tentative conclusion is based on a combination of Nash Euclidean embedding theorems, the local isomorphism theorem, cosmic crystallography and the theory of fractal-Cantorian spacetime. It is shown that the correct topological dimension D=4 of space is derived from the Euclidean embedding of spacetime quanta when the corresponding manifold is assumed to be compact. This and other conclusions regarding multi-connectivity seems to reinforce the findings of relatively recent research results on topological cosmology by Luminet et al. (see Nature 425;9 Oct. 2003:593–95).

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908004803
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:5:p:2787-2789

DOI: 10.1016/j.chaos.2008.10.011

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2787-2789