Arguments for the compactness and multiple connectivity of our cosmic spacetime
M.S. El Naschie
Chaos, Solitons & Fractals, 2009, vol. 41, issue 5, 2787-2789
Abstract:
Some global topological as well as quantative arguments are given, indicating that our universe is most probably compact, multiply connected and without boundaries. The analysis leading to this tentative conclusion is based on a combination of Nash Euclidean embedding theorems, the local isomorphism theorem, cosmic crystallography and the theory of fractal-Cantorian spacetime. It is shown that the correct topological dimension D=4 of space is derived from the Euclidean embedding of spacetime quanta when the corresponding manifold is assumed to be compact. This and other conclusions regarding multi-connectivity seems to reinforce the findings of relatively recent research results on topological cosmology by Luminet et al. (see Nature 425;9 Oct. 2003:593–95).
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077908004803
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:41:y:2009:i:5:p:2787-2789
DOI: 10.1016/j.chaos.2008.10.011
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().