Fractal structure in the color distribution of natural images
François Chapeau-Blondeau,
Julien Chauveau,
David Rousseau and
Paul Richard
Chaos, Solitons & Fractals, 2009, vol. 42, issue 1, 472-482
Abstract:
The colorimetric organization of RGB color images is investigated through the computation of the correlation integral of their three-dimensional histogram. For natural color images, as a common behavior, the correlation integral is found to follow a power law, with a noninteger exponent characteristic of a given image. This behavior identifies a fractal or multiscale self-similar distribution of the colors contained in typical natural images. This finding of a possible fractal structure in the colorimetric organization of natural images complement other fractal properties previously observed in their spatial organization. Such fractal colorimetric properties may be helpful to the characterization and modeling of natural images, and may contribute to progress in vision.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909000083
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:1:p:472-482
DOI: 10.1016/j.chaos.2009.01.008
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().