Hopf bifurcation in parallel polarized Nd:YAG laser
M.R. Parvathi,
Bindu M. Krishna,
S. Rajesh,
M.P. John and
V.M. Nandakumaran
Chaos, Solitons & Fractals, 2009, vol. 42, issue 1, 515-521
Abstract:
Dynamics of Nd:YAG laser with intracavity KTP crystal operating in two parallel polarized modes is investigated analytically and numerically. System equilibrium points were found out and the stability of each of them was checked using Routh–Hurwitz criteria and also by calculating the eigen values of the Jacobian. It is found that the system possesses three equilibrium points for (Ij,Gj), where j=1,2. One of these equilibrium points undergoes Hopf bifurcation in output dynamics as the control parameter is increased. The other two remain unstable throughout the entire region of the parameter space. Our numerical analysis of the Hopf bifurcation phenomena is found to be in good agreement with the analytical results. Nature of energy transfer between the two modes is also studied numerically.
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909000150
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:1:p:515-521
DOI: 10.1016/j.chaos.2009.01.013
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().