Critical behavior of the system of two crossing self-avoiding walks on a family of three-dimensional fractal lattices
I. Živić,
S. Elezović-Hadžić and
S. Milošević
Chaos, Solitons & Fractals, 2009, vol. 42, issue 1, 74-83
Abstract:
We study the polymer system consisting of two-polymer chains situated in a fractal container that belongs to the three-dimensional Sierpinski Gasket (3D SG) family of fractals. The two-polymer system is modeled by two interacting self-avoiding walks (SAW) immersed in a good solvent. To conceive the inter-chain interactions we apply the model of two crossing self-avoiding walks (CSAW) in which the chains can cross each other. By applying renormalization group (RG) method, we establish the relevant phase diagrams for b=2 and b=3 members of the 3D SG fractal family. Also, at the appropriate transition fixed points we calculate the contact critical exponents φ, associated with the number of contacts between monomers of different chains. For larger b(2⩽b⩽30) we apply Monte Carlo renormalization group (MCRG) method, and compare the obtained results for φ with phenomenological proposals for the contact critical exponent, as well as with results obtained for other similar models of two-polymer system.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790800502X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:1:p:74-83
DOI: 10.1016/j.chaos.2008.10.032
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().