Robust stability and stabilization of fractional-order linear systems with nonlinear uncertain parameters: An LMI approach
Sheng Yan Xing and
Jun Guo Lu
Chaos, Solitons & Fractals, 2009, vol. 42, issue 2, 1163-1169
Abstract:
This paper investigates the stability and stabilization problem of fractional-order linear systems with nonlinear uncertain parameters, which allow second-order uncertain parameters. The uncertainty in the fractional-order model appears in the form of a combination of additive uncertainty and multiplicative uncertainty. It is shown that the fractional-order model has a strong practical background. Sufficient conditions for the stability and stabilization of such fractional-order model are presented in terms of linear matrix inequalities. Two examples are given to show the effectiveness of the proposed results.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909001301
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:2:p:1163-1169
DOI: 10.1016/j.chaos.2009.03.017
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().