EconPapers    
Economics at your fingertips  
 

Dynamic analysis of a fractional-order Lorenz chaotic system

Yongguang Yu, Han-Xiong Li, Sha Wang and Junzhi Yu

Chaos, Solitons & Fractals, 2009, vol. 42, issue 2, 1181-1189

Abstract: The dynamic behaviors of fractional-order differential systems have received increasing attention in recent decades. But many results about fractional-order chaotic systems are attained only by using analytic and numerical methods. Based on the qualitative theory, the existence and uniqueness of solutions for a class of fractional-order Lorenz chaotic systems are investigated theoretically in this paper. The stability of the corresponding equilibria is also argued similarly to the integer-order counterpart. According to the obtained results, the bifurcation conditions of these two systems are significantly different. Numerical solutions, together with simulations, finally verify the correctness of our analysis.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909001283
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:2:p:1181-1189

DOI: 10.1016/j.chaos.2009.03.016

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:42:y:2009:i:2:p:1181-1189