Controlling chaos in a pendulum equation with ultra-subharmonic resonances
Jianping Yang and
Zhujun Jing
Chaos, Solitons & Fractals, 2009, vol. 42, issue 2, 1214-1226
Abstract:
Analytical and numerical results concerning control of chaos in a pendulum equation with parametric and external excitations are given by using Melnikov methods. We give the necessary conditions of chaos control with ultra-subharmonic resonances (i.e. Ω/ω=p/q,q>1,p,q are prime), where homoclinic chaos or heteroclinic chaos can be inhibited. Numerical simulations show that chaotic behavior can be converted to period-nq (n∈Z+) orbits by adjusting amplitude and phase-difference of parametric excitation, and the distribution of maximum Lyapunov exponents in parameter-plane (Ψ,β) gives the regions in which chaos can be controlled.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007790900157X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:2:p:1214-1226
DOI: 10.1016/j.chaos.2009.03.035
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().