Generalized projective synchronization for chaotic systems via Gaussian Radial Basis Adaptive Backstepping Control
Faezeh Farivar,
Mahdi Aliyari Shoorehdeli,
Mohammad Ali Nekoui and
Mohammad Teshnehlab
Chaos, Solitons & Fractals, 2009, vol. 42, issue 2, 826-839
Abstract:
This paper proposes the generalized projective synchronization for chaotic systems via Gaussian Radial Basis Adaptive Backstepping Control. In the neural backstepping controller, a Gaussian radial basis function is utilized to on-line estimate the system dynamic function. The adaptation laws of the control system are derived in the sense of Lyapunov function, thus the system can be guaranteed to be asymptotically stable.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909000691
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:2:p:826-839
DOI: 10.1016/j.chaos.2009.02.012
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().