A new hybrid nonlinear congruential number generator based on higher functional power of logistic maps
Songul Cecen,
R. Murat Demirer and
Coskun Bayrak
Chaos, Solitons & Fractals, 2009, vol. 42, issue 2, 847-853
Abstract:
We propose a nonlinear congruential pseudorandom number generator consisting of summation of higher order composition of random logistic maps under certain congruential mappings. We change both bifurcation parameters of logistic maps in the interval of U=[3.5599,4) and coefficients of the polynomials in each higher order composition of terms up to degree d. This helped us to obtain a perfect random decorrelated generator which is infinite and aperiodic. It is observed from the simulation results that our new PRNG has good uniformity and power spectrum properties with very flat white noise characteristics. The results are interesting, new and may have applications in cryptography and in Monte Carlo simulations.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909000678
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:2:p:847-853
DOI: 10.1016/j.chaos.2009.02.014
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().