Intermittent behaviour of a cracked rotor in the resonance region
Grzegorz Litak and
Jerzy T. Sawicki
Chaos, Solitons & Fractals, 2009, vol. 42, issue 3, 1495-1501
Abstract:
Vibrations of the Jeffcott rotor are modelled by a three degree of freedom system including coupling between lateral and torsional modes. The crack in a rotating shaft of the rotor is introduced via time dependent stiffness with off-diagonal couplings. Applying the external torque to the system allows to observe the effect of crack “breathing” and gain insight into the system. It is manifested in the complex dynamic behaviour of the rotor in the region of internal resonance, showing a quasi-periodic motion or even non-periodic behaviour. In the present paper report, we show the system response to the external torque excitation using nonlinear analysis tools such as bifurcation diagram, phase portraits, Poincaré maps and wavelet power spectrum. In the region of resonance, we study intermittent motions based on laminar phases interrupted by a series nonlinear beats.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909001672
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:3:p:1495-1501
DOI: 10.1016/j.chaos.2009.03.050
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().