EconPapers    
Economics at your fingertips  
 

Stability and Hopf bifurcation on a model for HIV infection of CD4+ T cells with delay

Xia Wang, Youde Tao and Xinyu Song

Chaos, Solitons & Fractals, 2009, vol. 42, issue 3, 1838-1844

Abstract: In this paper, a delayed differential equation model that describes HIV infection of CD4+ T cells is considered. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated. In succession, using the normal form theory and center manifold argument, we derive the explicit formulas which determine the stability, direction and other properties of bifurcating periodic solutions.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909002094
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:3:p:1838-1844

DOI: 10.1016/j.chaos.2009.03.089

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1838-1844