Stability and Hopf bifurcation on a model for HIV infection of CD4+ T cells with delay
Xia Wang,
Youde Tao and
Xinyu Song
Chaos, Solitons & Fractals, 2009, vol. 42, issue 3, 1838-1844
Abstract:
In this paper, a delayed differential equation model that describes HIV infection of CD4+ T cells is considered. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated. In succession, using the normal form theory and center manifold argument, we derive the explicit formulas which determine the stability, direction and other properties of bifurcating periodic solutions.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909002094
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:3:p:1838-1844
DOI: 10.1016/j.chaos.2009.03.089
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().