Fractal analysis of damage detected in concrete structural elements under loading
A. Carpinteri,
G. Lacidogna and
G. Niccolini
Chaos, Solitons & Fractals, 2009, vol. 42, issue 4, 2047-2056
Abstract:
In Civil Engineering materials subjected to stress or strain states a quantitative evaluation of damage is of great importance due to the critical character of this phenomenon, which at a certain point suddenly turns into a catastrophic failure. An effective damage assessment criterion is represented by the statistical analysis of the amplitude distribution of acoustic emission (AE) signals emerging from the growing microcracks. The amplitudes of such signals are distributed according to the Gutenberg–Richter (GR) law and characterised through the b-value which decreases systematically with damage growth. On the other hand, the damage process is also characterised by the progressive coalescence of microcracks to form fracture surfaces. Geometrically the fractal dimension D of the damaged domain is expected to decrease from an initial value comprised between 2 and 3 towards a final value nearly equal to 2. The b-value and the fractal analysis, are here applied to two case studies of concrete specimens loaded up to failure, and the obtained results are compared and discussed. In particular, we emphasize that a single fractal dimension does not adequately describe a crack network, since two damaged domains with the same fractal dimension could have significantly different properties.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909003142
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:4:p:2047-2056
DOI: 10.1016/j.chaos.2009.03.165
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().