Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system
Xia Wang
Chaos, Solitons & Fractals, 2009, vol. 42, issue 4, 2208-2217
Abstract:
A three-dimensional autonomous system – the Rucklidge system is considered. By the analytical method, Hopf bifurcation of Rucklidge system may occur when choosing an appropriate bifurcation parameter. Using the undetermined coefficient method, the existence of heteroclinic and homoclinic orbits in the Rucklidge system is proved, and the explicit and uniformly convergent algebraic expressions of Si’lnikov type orbits are given. As a result, the Si’lnikov criterion guarantees that there exists the Smale horseshoe chaos motion for the Rucklidge system.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909002884
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:4:p:2208-2217
DOI: 10.1016/j.chaos.2009.03.137
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().