Doubly periodic wave solution to two-dimensional diffractive-diffusive Ginzburg–Landau equation
Donglong Li,
Zhengde Dai,
Yanfeng Guo and
Hongwei Zhou
Chaos, Solitons & Fractals, 2009, vol. 42, issue 4, 2288-2296
Abstract:
An algebraic method is applied to obtain a series of exact solutions to the two-dimensional cubic Ginzburg–Landau equation with Kerr nonlinearity, linear and quintic losses, cubic gain, and temporal-domain filtering. A Jacobi elliptic function expansion method, which is more general than the hyperbolic tangent function expansion method, is proposed to obtain the exact periodic solutions. It is shown that the periodic solutions obtained by using Jacobi elliptic function expansion method include some like-kink wave solutions and like-shock wave solutions.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909002677
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:4:p:2288-2296
DOI: 10.1016/j.chaos.2009.03.131
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().