EconPapers    
Economics at your fingertips  
 

Global dynamics of a dengue epidemic mathematical model

Liming Cai, Shumin Guo, XueZhi Li and Mini Ghosh

Chaos, Solitons & Fractals, 2009, vol. 42, issue 4, 2297-2304

Abstract: The paper investigates the global stability of a dengue epidemic model with saturation and bilinear incidence. The constant human recruitment rate and exponential natural death, as well as vector population with asymptotically constant population, are incorporated into the model. The model exhibits two equilibria, namely, the disease-free equilibrium and the endemic equilibrium. The stability of these two equilibria is controlled by the threshold number R0. It is shown that if R0 is less than one, the disease-free equilibrium is globally asymptotically stable and in such a case the endemic equilibrium does not exist; if R0 is greater than one, then the disease persists and the unique endemic equilibrium is globally asymptotically stable.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909002665
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:4:p:2297-2304

DOI: 10.1016/j.chaos.2009.03.130

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2297-2304