The complexity of an investment competition dynamical model with imperfect information in a security market
Baogui Xin,
Junhai Ma and
Qin Gao
Chaos, Solitons & Fractals, 2009, vol. 42, issue 4, 2425-2438
Abstract:
We present a nonlinear discrete dynamical model of investment competition with imperfect information for N heterogeneous oligopolists in a security market. In this paper, our focus is on a given three-dimensional model which exhibits highly rich dynamical behaviors. Based on Wen’s Hopf bifurcation criterion [Wen GL. Criterion to identify Hopf bifurcations in maps of arbitrary dimension. Phys Rev E 2005;72:026201–3; Wen GL, Xu DL, Han X. On creation of Hopf bifurcations in discrete-time nonlinear systems. Chaos 2002;12(2):350–5] and Kuznetsov’s normal form theory [Kuznetsov YA. Elements of applied bifurcation theory. New York: Springer-Verlag; 1998. p. 125–37], we study the model’s stability, criterion and direction of Neimark–Sacker bifurcation. Moreover, we numerically simulate a complexity evolution route: fixed point, closed invariant curve, double closed invariant curves, fourfold closed invariant curves, strange attractor, period-3 closed invariant curve, period-3 2-tours, period-4 closed invariant curve, period-4 2-tours.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909002410
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:4:p:2425-2438
DOI: 10.1016/j.chaos.2009.03.110
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().