Finite symmetry transformation groups and exact solutions of the cylindrical Korteweg-de Vries equation
Wang-Chuan Ye and
Biao Li
Chaos, Solitons & Fractals, 2009, vol. 42, issue 5, 2623-2628
Abstract:
Based on the new symmetry group method developed by Lou et al. and symbolic computation, both the Lie point groups and the non-Lie symmetry groups of the cylindrical Korteweg-de Vries (cKdV) equation are obtained. With the transformation groups, a type of group invariant solutions of cKdV equation can be derived from a simple one. Furthermore, some transformations from the cKdV equation to KP equation can also be discovered by this method.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909003245
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:5:p:2623-2628
DOI: 10.1016/j.chaos.2009.03.186
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().