EconPapers    
Economics at your fingertips  
 

The mathematical description of uniformity and related theorems

Chuanwen Luo, Chundi Yi, Gang Wang, Longsuo Li and Chuncheng Wang

Chaos, Solitons & Fractals, 2009, vol. 42, issue 5, 2748-2753

Abstract: Uniform index is a conception that can describe the uniformity of a finite point set in a polyhedron, and is closely related to chaos. In order to study uniform index, the concept of contained uniform index is defined, which is similar to uniform index and has good mathematical properties. In this paper, we prove the convergence of the contained uniform index, and develop the base of proving the convergence of uniform index.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909003415
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:5:p:2748-2753

DOI: 10.1016/j.chaos.2009.03.181

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:2748-2753