An improved chaos-based secure communication technique using a novel encryption function with an embedded cipher key
Ashraf A. Zaher
Chaos, Solitons & Fractals, 2009, vol. 42, issue 5, 2804-2814
Abstract:
In this paper, a secure communication technique, using a chaotic system with a single adjustable parameter and a single observable time series, is proposed. The chosen chaotic system, which is a variant of the famous Rikitake model, has a special structure for which the adjustable parameter appears in the dynamic equation of the observable time series. This particular structure is used to build a synchronization-based state observer that is decoupled from the adaptive parameter identifier. A local Lyapunov function is used to design the parameter identifier, with an adjustable convergence rate that guarantees the stability of the overall system. A two-channel transmission method is used to exemplify the suggested technique where the secret message is encoded using a nonlinear function of both the chaotic states and the adjustable parameter of the chaotic system that acts as a secret key. Simulations show that, at the receiver, the signal can be efficiently retrieved only if the secret key is known, even when both the receiver and the transmitter are in perfect synchronization. The proposed technique is demonstrated to have improved security and privacy against intruders, when compared to other techniques reported in the literature, while being simple to implement using both analog and digital hardware. In addition, the chosen chaotic system is shown to be flexible in accommodating the transmission of signals with variable bandwidths, which promotes the superiority and versatility of the suggested secure communication technique.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909003580
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:5:p:2804-2814
DOI: 10.1016/j.chaos.2009.04.032
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().