EconPapers    
Economics at your fingertips  
 

Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge

Yaroslav D. Sergeyev

Chaos, Solitons & Fractals, 2009, vol. 42, issue 5, 3042-3046

Abstract: Very often traditional approaches studying dynamics of self-similarity processes are not able to give their quantitative characteristics at infinity and, as a consequence, use limits to overcome this difficulty. For example, it is well known that the limit area of Sierpinski’s carpet and volume of Menger’s sponge are equal to zero. It is shown in this paper that recently introduced infinite and infinitesimal numbers allow us to use exact expressions instead of limits and to calculate exact infinitesimal values of areas and volumes at various points at infinity even if the chosen moment of the observation is infinitely faraway on the time axis from the starting point. It is interesting that traditional results that can be obtained without the usage of infinite and infinitesimal numbers can be produced just as finite approximations of the new ones. The importance of the possibility to have this kind of quantitative characteristics for E-Infinity theory is emphasized.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909003877
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:5:p:3042-3046

DOI: 10.1016/j.chaos.2009.04.013

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:3042-3046