Control uncertain Genesio–Tesi chaotic system: Adaptive sliding mode approach
Sara Dadras and
Hamid Reza Momeni
Chaos, Solitons & Fractals, 2009, vol. 42, issue 5, 3140-3146
Abstract:
An adaptive sliding mode control (ASMC) technique is introduced in this paper for a chaotic dynamical system (Genesio–Tesi system). Using the sliding mode control technique, a sliding surface is determined and the control law is established. An adaptive sliding mode control law is derived to make the states of the Genesio–Tesi system asymptotically track and regulate the desired state. The designed control scheme can control the uncertain chaotic behaviors to a desired state without oscillating very fast and guarantee the property of asymptotical stability. An illustrative simulation result is given to demonstrate the effectiveness of the proposed adaptive sliding mode control design.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077909003993
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:42:y:2009:i:5:p:3140-3146
DOI: 10.1016/j.chaos.2009.04.018
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().