On complete manifolds supporting a weighted Sobolev type inequality
Levi Adriano and
Changyu Xia
Chaos, Solitons & Fractals, 2011, vol. 44, issue 11, 940-946
Abstract:
This paper studies the geometric and topological properties of complete open Riemannian manifolds which support a weighted Sobolev or log-Sobolev inequality. We show that the constant in the weighted Sobolev inequality on a complete open Riemannian manifold should be bigger than or equal to the optimal one on the Euclidean space of the same dimension and that a complete open manifold of asymptotically non-negative Ricci curvature supporting a weighted Sobolev inequality must have large volume growth. We also show that a complete manifold of non-negative Ricci curvature on which the log-Sobolev inequality holds is not very far from the Euclidean space.
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791100138X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:44:y:2011:i:11:p:940-946
DOI: 10.1016/j.chaos.2011.07.010
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().