New explicit solutions for (2+1)-dimensional soliton equation
Caier Ye and
Weiguo Zhang
Chaos, Solitons & Fractals, 2011, vol. 44, issue 12, 1063-1069
Abstract:
In this Letter, we study (2+1)-dimensional soliton equation by using the bifurcation theory of planar dynamical systems. Following a dynamical system approach, in different parameter regions, we depict phase portraits of a travelling wave system. Bell profile solitary wave solutions, kink profile solitary wave solutions and periodic travelling wave solutions are given. Further, we present the relations between the bounded travelling wave solutions and the energy level h. Through discussing the energy level h, we obtain all explicit formulas of solitary wave solutions and periodic wave solutions.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077911001731
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:44:y:2011:i:12:p:1063-1069
DOI: 10.1016/j.chaos.2011.08.011
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().