Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization
Fuchen Zhang,
Yonglu Shu,
Hongliang Yang and
Xiaowu Li
Chaos, Solitons & Fractals, 2011, vol. 44, issue 1, 137-144
Abstract:
To estimate the ultimate bound and positively invariant set for a dynamic system is an important but quite challenging task in general. This paper has investigated the ultimate bound and positively invariant set of a permanent magnet synchronous motor system. We combine the Lyapunov stability theory with the comparison principle method. For this system, we derive a three-dimensional ellipsoidal ultimate bound and positively invariant set for all the positive values of its parameters σ, γ. In addition, the two-dimensional bound with respect to x−y are established. Then, it is the two-dimensional estimation about x−z. Finally, the result is applied to the study of completely chaos synchronization. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme. At the same time, one numerical example illustrating a localization of a chaotic attractor is presented as well. Numerical simulation is consistent with the results of theoretical calculation.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791100004X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:44:y:2011:i:1:p:137-144
DOI: 10.1016/j.chaos.2011.01.001
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().