EconPapers    
Economics at your fingertips  
 

Limit of ratio of consecutive terms for general order-k linear homogeneous recurrences with constant coefficients

Alberto Fiorenza and Giovanni Vincenzi

Chaos, Solitons & Fractals, 2011, vol. 44, issue 1, 145-152

Abstract: For complex linear homogeneous recursive sequences with constant coefficients we find a necessary and sufficient condition for the existence of the limit of the ratio of consecutive terms. The result can be applied even if the characteristic polynomial has not necessarily roots with modulus pairwise distinct, as in the celebrated Poincaré’s theorem. In case of existence, we characterize the limit as a particular root of the characteristic polynomial, which depends on the initial conditions and that is not necessarily the unique root with maximum modulus and multiplicity. The result extends to a quite general context the way used to find the Golden mean as limit of ratio of consecutive terms of the classical Fibonacci sequence.

Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077911000087
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:44:y:2011:i:1:p:145-152

DOI: 10.1016/j.chaos.2011.01.003

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:44:y:2011:i:1:p:145-152