NAFASS: Discrete spectroscopy of random signals
R.R. Nigmatullin,
S.I. Osokin and
V.A. Toboev
Chaos, Solitons & Fractals, 2011, vol. 44, issue 4, 226-240
Abstract:
In this paper we suggest a new discrete spectroscopy for analysis of random signals and fluctuations. This discrete spectroscopy is based on successful solution of the modified Prony’s problem for the strongly-correlated random sequences. As opposed to the general Prony’s problem where the set of frequencies is supposed to be unknown in the new approach suggested the distribution of the unknown frequencies can be found for the strongly-correlated random sequences. Preliminary information about the frequency distribution facilitates the calculations and attaches an additional stability in the presence of a noise. This spectroscopy uses only the informative-significant frequency band that helps to fit the given signal with high accuracy. It means that any random signal measured in t-domain can be “read” in terms of its amplitude-frequency response (AFR) without model assumptions related to the behavior of this signal in the frequency region. The method overcomes some essential drawbacks of the conventional Prony’s method and can be determined as the non-orthogonal amplitude frequency analysis of the smoothed sequences (NAFASS). In this paper we outline the basic principles of the NAFASS procedure and show its high potential possibilities based on analysis of some actual NIR data. The AFR obtained serves as a specific fingerprint and contains all necessary information which is sufficient for calibration and classification of the informative-significant band frequencies that the complex or nanoscopic system studied might have.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077911000208
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:44:y:2011:i:4:p:226-240
DOI: 10.1016/j.chaos.2011.02.003
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().