Theoretical analysis and numerical simulation of Parrondo’s paradox game in space
Neng-gang Xie,
Yun Chen,
Ye Ye,
Gang Xu,
Lin-gang Wang and
Chao Wang
Chaos, Solitons & Fractals, 2011, vol. 44, issue 6, 401-414
Abstract:
A multi-agent spatial Parrondo game model is designed according to the cooperative Parrondo’s paradox proposed by Toral. The model is composed of game A and game B. Game A is a zero-sum game between individuals, reflecting competitive interaction between an individual and its neighbors. The winning or losing probability of one individual in game B depends on its neighbors’ winning or losing states, reflecting the dependence that individuals has on microhabitat and the overall constraints that the microhabitat has on individuals. By using the analytical approach based on discrete-time Markov chain, we analyze game A, game B and the random combination of game A+B, and obtain corresponding stationary distribution probability and mathematical expectations. We have established conditions of the weak and strong forms of the Parrondo effect, and compared the computer simulation results with the analytical results so as to verify their validity. The analytical results reflect that competition results in the ratchet effect of game B, which generates Parrondo’s Paradox that the combination of the losing games can produce a winning result.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791100049X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:44:y:2011:i:6:p:401-414
DOI: 10.1016/j.chaos.2011.01.014
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().