Devaney’s chaos on uniform limit maps
Kesong Yan,
Fanping Zeng and
Gengrong Zhang
Chaos, Solitons & Fractals, 2011, vol. 44, issue 7, 522-525
Abstract:
Let (X,d) be a compact metric space and fn:X→X a sequence of continuous maps such that (fn) converges uniformly to a map f. The purpose of this paper is to study the Devaney’s chaos on the uniform limit f. On the one hand, we show that f is not necessarily transitive even if all fn mixing, and the sensitive dependence on initial conditions may not been inherited to f even if the iterates of the sequence have some uniform convergence, which correct two wrong claims in [1]. On the other hand, we give some equivalence conditions for the uniform limit f to be transitive and to have sensitive dependence on initial conditions. Moreover, we present an example to show that a non-transitive sequence may converge uniformly to a transitive map.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077911000695
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:44:y:2011:i:7:p:522-525
DOI: 10.1016/j.chaos.2011.05.006
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().