EconPapers    
Economics at your fingertips  
 

Cluster synchronization for directed community networks via pinning partial schemes

Cheng Hu and Haijun Jiang

Chaos, Solitons & Fractals, 2012, vol. 45, issue 11, 1368-1377

Abstract: In this paper, we focus on driving a class of directed networks to achieve cluster synchronization by pinning schemes. The desired cluster synchronization states are no longer decoupled orbits but a set of un-decoupled trajectories. Each community is considered as a whole and the synchronization criteria are derived based on the information of communities. Several pinning schemes including feedback control and adaptive strategy are proposed to select controlled communities by analyzing the information of each community such as indegrees and outdegrees. In all, this paper answers several challenging problems in pinning control of directed community networks: (1) What communities should be chosen as controlled candidates? (2) How many communities are needed to be controlled? (3) How large should the control gains be used in a given community network to achieve cluster synchronization? Finally, an example with numerical simulations is given to demonstrate the effectiveness of the theoretical results.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912001543
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:11:p:1368-1377

DOI: 10.1016/j.chaos.2012.06.015

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:45:y:2012:i:11:p:1368-1377