Solving the non-isospectral Ablowitz–Ladik hierarchy via the inverse scattering transform and reductions
Qi Li,
Deng-yuan Chen,
Jian-bing Zhang and
Shou-ting Chen
Chaos, Solitons & Fractals, 2012, vol. 45, issue 12, 1479-1485
Abstract:
The non-isospectral Ablowitz–Ladik hierarchy is integrated by the inverse scattering transform. In contrast with the isospectral Ablowitz–Ladik hierarchy, the eigenvalues of the non-isospectral Ablowitz–Ladik equations in the scattering data are time-dependent. The multi-soliton solution for the hierarchy is presented. The reductions to the non-isospectral discrete NLS hierarchy and the non-isospectral discrete mKdV hierarchy and their solutions are considered.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912001889
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:12:p:1479-1485
DOI: 10.1016/j.chaos.2012.08.010
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().