Variable elasticity of substituition in a discrete time Solow–Swan growth model with differential saving
Serena Brianzoni,
Cristiana Mammana and
Elisabetta Michetti
Chaos, Solitons & Fractals, 2012, vol. 45, issue 1, 98-108
Abstract:
We study the dynamics shown by the discrete time neoclassical one-sector growth model with differential savings as in Bohm and Kaas [4] while assuming VES production function in the form given by Revankar [24]. It is shown that the model can exhibit unbounded endogenous growth despite the absence of exogenous technical change and the presence of non-reproducible factors if the elasticity of substitution is greater than one. We then consider parameters range related to non-trivial dynamics (i.e. the elasticity of substitution in less than one and shareholders save more than workers) and we focus on local and global bifurcations causing the transition to more and more complex asymptotic dynamics. In particular, as our map is non-differentiable in a subset of the states space, we show that border collision bifurcations occur. Several numerical simulations support the analysis.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077911001962
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:1:p:98-108
DOI: 10.1016/j.chaos.2011.10.004
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().