Generalized synchronization of strictly different systems: Partial-state synchrony
J.G. Barajas Ramírez,
K.P. Cuéllar Galarza and
R. Femat
Chaos, Solitons & Fractals, 2012, vol. 45, issue 3, 193-204
Abstract:
Generalized synchronization (GS) occurs when the states of one system, through a functional mapping are equal to states of another. Since for many physical systems only some state variables are observable, it seems convenient to extend the theoretical framework of synchronization to consider such situations. In this contribution, we investigate two variants of GS which appear between strictly different chaotic systems. We consider that for both the drive and response systems only one observable is available. For the case when both systems can be taken to a complete triangular form, a GS can be achieved where the functional mapping between drive and response is found directly from their Lie-algebra based transformations. Then, for systems that have dynamics associated to uncontrolled and unobservable states, called internal dynamics, where only a partial triangular form is possible via coordinate transformations, for this situation, a GS is achieved for which the coordinate transformations describe the functional mapping of only a few state variables. As such, we propose definitions for complete and partial-state GS. These particular forms of GS are illustrated with numerical simulations of well-known chaotic benchmark systems.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077911002372
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:3:p:193-204
DOI: 10.1016/j.chaos.2011.12.005
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().