Hyperbolicity of the invariant sets for the real polynomial maps
Xu Zhang
Chaos, Solitons & Fractals, 2012, vol. 45, issue 3, 314-324
Abstract:
In this paper, the conditions under which there exits a uniformly hyperbolic invariant set for the map fa(x)=ag(x) are studied, where a is a real parameter, and g(x) is a monic real-coefficient polynomial. It is shown that for certain parameter regions, the map has a uniformly hyperbolic invariant set on which it is topologically conjugate to the one-sided subshift of finite type for A, where ∣a∣ is sufficiently large, A is an eventually positive transition matrix, and g has at least two different real zeros or only one real zero. Further, it is proved that there exists an invariant set on which the map is topologically semiconjugate to the one-sided subshift of finite type for a particular irreducible transition matrix under certain conditions, and one type of these maps is not hyperbolic on the invariant set.
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000136
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:3:p:314-324
DOI: 10.1016/j.chaos.2011.12.016
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().