EconPapers    
Economics at your fingertips  
 

Hyperbolicity of the invariant sets for the real polynomial maps

Xu Zhang

Chaos, Solitons & Fractals, 2012, vol. 45, issue 3, 314-324

Abstract: In this paper, the conditions under which there exits a uniformly hyperbolic invariant set for the map fa(x)=ag(x) are studied, where a is a real parameter, and g(x) is a monic real-coefficient polynomial. It is shown that for certain parameter regions, the map has a uniformly hyperbolic invariant set on which it is topologically conjugate to the one-sided subshift of finite type for A, where ∣a∣ is sufficiently large, A is an eventually positive transition matrix, and g has at least two different real zeros or only one real zero. Further, it is proved that there exists an invariant set on which the map is topologically semiconjugate to the one-sided subshift of finite type for a particular irreducible transition matrix under certain conditions, and one type of these maps is not hyperbolic on the invariant set.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000136
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:3:p:314-324

DOI: 10.1016/j.chaos.2011.12.016

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:45:y:2012:i:3:p:314-324