EconPapers    
Economics at your fingertips  
 

Effect of asynchronous updating on the stability of cellular automata

J.M. Baetens, P. Van der Weeën and B. De Baets

Chaos, Solitons & Fractals, 2012, vol. 45, issue 4, 383-394

Abstract: Although cellular automata (CAs) were conceptualized as utter discrete mathematical models in which the states of all their spatial entities are updated simultaneously at every consecutive time step, i.e. synchronously, various CA-based models that rely on so-called asynchronous update methods have been constructed in order to overcome the limitations that are tied up with the classical way of evolving CAs. So far, only a few researchers have addressed the consequences of this way of updating on the evolved spatio-temporal patterns, and the reachable stationary states. In this paper, we exploit Lyapunov exponents to determine to what extent the stability of the rules within a family of totalistic CAs is affected by the underlying update method. For that purpose, we derive an upper bound on the maximum Lyapunov exponent of asynchronously iterated CAs, and show its validity, after which we present a comparative study between the Lyapunov exponents obtained for five different update methods, namely one synchronous method and four well-established asynchronous methods. It is found that the stability of CAs is seriously affected if one of the latter methods is employed, whereas the discrepancies arising between the different asynchronous methods are far less pronounced and, finally, we discuss the repercussions of our findings on the development of CA-based models.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000185
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:4:p:383-394

DOI: 10.1016/j.chaos.2012.01.002

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:45:y:2012:i:4:p:383-394