Switching induced complex dynamics in an extended logistic map
Erik A. Levinsohn,
Steve A. Mendoza and
Enrique Peacock-López
Chaos, Solitons & Fractals, 2012, vol. 45, issue 4, 426-432
Abstract:
Switching strategies have been related to the so-called Parrondian games, where the alternation of two losing games yields a winning game. We can consider two dynamics that, by themselves, yield different simple dynamical behaviors, but when alternated, yield complex trajectories. In the analysis of the alternate-extended logistic map, we observe a plethora of complex dynamic behaviors, which coexist with a super stable extinction solution.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000203
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:4:p:426-432
DOI: 10.1016/j.chaos.2011.12.020
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().