A family of integrable differential–difference equations, its bi-Hamiltonian structure and binary nonlinearization of the Lax pairs and adjoint Lax pairs
Xi-Xiang Xu
Chaos, Solitons & Fractals, 2012, vol. 45, issue 4, 444-453
Abstract:
A family of integrable differential–difference equations is derived by the method of Lax pairs. A discrete Hamiltonian operator involving two arbitrary real parameters is introduced. When the parameters are suitably selected, a pair of discrete Hamiltonian operators is presented. Bi-Hamiltonian structure of obtained family is established by discrete trace identity. Then, Liouville integrability for the obtained family is proved. Ultimately, through the binary nonlinearization of the Lax pairs and adjoint Lax pairs, every differential–difference equation in obtained family is factored by an integrable symplectic map and a finite-dimensional integrable system in Liouville sense.
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000331
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:4:p:444-453
DOI: 10.1016/j.chaos.2012.01.012
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().