Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems
Feng Liang and
Maoan Han
Chaos, Solitons & Fractals, 2012, vol. 45, issue 4, 454-464
Abstract:
In this paper, we study the bifurcation of limit cycles in piecewise smooth systems by perturbing a piecewise Hamiltonian system with a generalized homoclinic or generalized double homoclinic loop. We first obtain the form of the expansion of the first Melnikov function. Then by using the first coefficients in the expansion, we give some new results on the number of limit cycles bifurcated from a periodic annulus near the generalized (double) homoclinic loop. As applications, we study the number of limit cycles of a piecewise near-Hamiltonian systems with a generalized homoclinic loop and a central symmetric piecewise smooth system with a generalized double homoclinic loop.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000276
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:4:p:454-464
DOI: 10.1016/j.chaos.2011.09.013
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().