EconPapers    
Economics at your fingertips  
 

Some fixed point results for a generalized ψ-weak contraction mappings in orbitally metric spaces

Wasfi Shatanawi

Chaos, Solitons & Fractals, 2012, vol. 45, issue 4, 520-526

Abstract: Samet and Vetro [Samet B, Vetro C. Berinde mappings in orbitally complete metric spaces. Chaos Solitons Fract 2011;44:1075–9.] studied a fixed point theorem for a self-mapping satisfying a general contractive condition of integral type in orbitally complete metric spaces. In this paper, we introduce the notion of a generalized ψ-weak contraction mapping and establish some results in orbitally complete metric spaces. Our results generalize several well-known comparable results in the literature. As an application of our results we deduce the result of Samet and Vetro. Some examples are given to illustrate the useability of our results.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000446
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:4:p:520-526

DOI: 10.1016/j.chaos.2012.01.015

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:45:y:2012:i:4:p:520-526