Heteroclinic cycles in the repressilator model
A. Kuznetsov and
V. Afraimovich
Chaos, Solitons & Fractals, 2012, vol. 45, issue 5, 660-665
Abstract:
A repressilator is a synthetic regulatory network that produces self-sustained oscillations. We analyze the evolution of the oscillatory solution in the repressilator model. We have established a connection between the evolution of the oscillatory solution and formation of a heteroclinic cycle at infinity. The convergence of the limit cycle to the heteroclinic cycle occurs very differently compared to the well-studied cases. The transition studied here presents a new bifurcation scenario.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000549
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:5:p:660-665
DOI: 10.1016/j.chaos.2012.02.009
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().