Synchronization of fractional order chaotic systems using active control method
S.K. Agrawal,
M. Srivastava and
S. Das
Chaos, Solitons & Fractals, 2012, vol. 45, issue 6, 737-752
Abstract:
In this article, the active control method is used for synchronization of two different pairs of fractional order systems with Lotka–Volterra chaotic system as the master system and the other two fractional order chaotic systems, viz., Newton–Leipnik and Lorenz systems as slave systems separately. The fractional derivative is described in Caputo sense. Numerical simulation results which are carried out using Adams–Bashforth–Moulton method show that the method is easy to implement and reliable for synchronizing the two nonlinear fractional order chaotic systems while it also allows both the systems to remain in chaotic states. A salient feature of this analysis is the revelation that the time for synchronization increases when the system-pair approaches the integer order from fractional order for Lotka–Volterra and Newton–Leipnik systems while it reduces for the other concerned pair.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077912000495
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:45:y:2012:i:6:p:737-752
DOI: 10.1016/j.chaos.2012.02.004
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().